Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Heliyon ; 10(7): e27949, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689955

RESUMO

Aberrant accumulation of protein misfolding can cause aggregation and fibrillation and is one of the primary characteristic features of neurodegenerative diseases. Because they are disordered, misfolded, and aggregated proteins pose a significant setback in drug designing. The structural study of intermediate steps in these kinds of aggregated proteins will allow us to determine the conformational changes as well as the probable pathways encompassing various neurodegenerative disorders. The analysis of protein aggregates involved in neurodegenerative diseases relies on a diverse toolkit of biophysical techniques, encompassing both morphological and non-morphological methods. Additionally, Thioflavin T (ThT) assays and Circular Dichroism (CD) spectroscopy facilitate investigations into aggregation kinetics and secondary structure alterations. The collective application of these biophysical techniques empowers researchers to comprehensively unravel the intricate nature of protein aggregates associated with neurodegeneration. Furthermore, the topics covered in this review have summed up a handful of well-established techniques used for the structural analysis of protein aggregation. This multifaceted approach advances our fundamental understanding of the underlying mechanisms driving neurodegenerative diseases and informs potential therapeutic strategies.

2.
J Pharm Biomed Anal ; 244: 116121, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581932

RESUMO

Natural approach became a high demand for the prevention and treatment of such diseases for their proven safety and efficacy. This study is aimed to perform comparative phytochemical analysis of white pitaya (Hylocereus undatus) peel, pulp and seed extracts via determination of total flavonoid content, phenolic content, and antioxidant capacity, coupled with HPLC-ESI/MS-MS analysis. Further, we evaluated the synergistic cytotoxic potential with Cisplatin against cervical cancer cells with investigation of underlying mechanism. The highest content of phenolics and antioxidants were found in both seed and peel extracts. The HPLC-ESI/MS-MS revealed identification of flavonoids, phenolic acids, anthocyanin glycosides, lignans, stilbenes, and coumarins. The cytotoxicity effects were evaluated by MTT assay against prostate, breast and cervical (HeLa) and Vero cell lines. The seed and peel extracts showed remarkable cytotoxic effect against all tested cell lines. Moreover, the selectivity index confirmed high selectivity of pitaya extracts to cancer cells and safety on normal cells. The combined therapy with Cisplatin effectively enhanced its efficacy and optimized the treatment outcomes, through the apoptotic ability of pitaya extracts in HeLa cells, as evaluated by flow cytometry. Besides, RT-PCR and western blotting analysis showed downregulation of Bcl-2 and overexpression of P53, BAX among HeLa cells treated with pitaya extracts, which eventually activated apoptosis process. Thus, pitaya extract could be used as adjuvant therapy with cisplatin for treatment of cervical cancer. Furthermore, in-vivo extensive studies on the seed and peel extracts, and their compounds are recommended to gain more clarification about the required dose, and side effects.


Assuntos
Apoptose , Cactaceae , Cisplatino , Sinergismo Farmacológico , Frutas , Extratos Vegetais , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Células HeLa , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Feminino , Animais , Cactaceae/química , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Células Vero , Chlorocebus aethiops , Sementes/química , Antineoplásicos Fitogênicos/farmacologia , Flavonoides/farmacologia , Flavonoides/análise , Antioxidantes/farmacologia , Fenóis/farmacologia , Fenóis/análise , Metabolômica/métodos
3.
Transl Cancer Res ; 13(2): 762-770, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482430

RESUMO

Background: Lung cancer is the top cause of mortality in males and the second largest cause of cancer-related fatalities in women worldwide. Non-small cell lung cancer (NSCLC) cases are discovered at an advanced stage, raising major challenges in disease management and survival outcomes. This study aimed to investigate the clinical findings and management of stage IIIB and IV NSCLC patients for better decision-making, disease management, and understanding of this fatal disease. Methods: In this cohort study of 340 patients, a total of 140 (41.2%) were diagnosed with advanced-stage NSCLC at a mean age of 64 years. The electronic data of patients from 2015 to 2021 who met the inclusion criteria were retrieved from two tertiary hospitals in Riyadh, Saudi Arabia, and an Excel sheet was used to record the variables. Patients' data including all categorical variables such as gender, stage, metastasis, ALK, EGFR, and ROS, etc., and continuous variables such as age and body mass index (BMI) were retrieved and analyzed. Results: The multivariate Cox-regression model indicated that smoking was the significant risk factor of death for two-thirds of male smokers (37.9%), with a median survival time of 123 days. Disease progression was higher with pleural and brain metastasis, and localized metastasis was the highest in 75% of patients. The intent of treatment was mainly palliative, however, a statistically significant association was found with the simultaneous use of chemotherapy and immunotherapy. Patients' response to first-line treatment revealed a significant improvement if chemotherapy treatment was maintained at the same dose without interruption of dosage. Conclusions: The overall cure and survival rates for NSCLC remain low, particularly in metastatic disease. Therefore, continued research into new drugs and combination therapies is required for better decision-making to expand the clinical benefit to a broader patient population and to improve outcomes in NSCLC.

4.
J Trace Elem Med Biol ; 83: 127401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301314

RESUMO

BACKGROUND: While previous studies have provided insights into the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) on aquatic organisms, there is still a substantial amount of information lacking about the possible effects of their doped counterparts. The goal of the current work was to address this gap by examining Mytilus galloprovincialis reaction to exposure to doped and undoped nanoparticles. METHODS: Two concentrations (50 or 100 µg/L) of undoped ZnO and TiO2 NPs, as well as their gold (Au) doped counterparts, were applied on mussels for 14 days, and the effects on biomarkers activities in digestive glands and gills were assessed by spectrophotometry. RESULTS: The NPs were quasi-spherical in shape (below 100 nm), stable in seawater, and with no aggregation for both doped and undoped forms. Analytical results using inductively coupled plasma atomic emission spectroscopy indicated the uptake of NPs in mussels. Furthermore, it was found that biometal dyshomeostasis could occur following NP treatment and that doping the NPs aggravated this response. At the biochemical level, exposure to undoped NPs caused membrane damage, neurotoxic effect, and changes in the activities in the gills and digestive glands of superoxide dismutase, catalase, and glutathione-S-transferase, in a concentration and organ-dependent manner. CONCLUSION: Doping ZnO NPs and TiO2NPs with Au induced additional oxidative stress, membrane damage, and neurotoxicity in mussels.


Assuntos
Nanopartículas Metálicas , Mytilus , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Ouro/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo , Titânio/toxicidade , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade
5.
BMC Microbiol ; 24(1): 54, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341568

RESUMO

BACKGROUND: Candida albicans is the most common fungus that causes vaginal candidiasis in immunocompetent women and catastrophic infections in immunocompromised patients. The treatment of such infections is hindered due to the increasing emergence of resistance to azoles in C. albicans. New treatment approaches are needed to combat candidiasis especially in the dwindled supply of new effective and safe antifungals. The resistance to azoles is mainly attributed to export of azoles outside the cells by means of the efflux pump that confers cross resistance to all azoles including fluconazole (FLC). OBJECTIVES: This study aimed to investigate the possible efflux pump inhibiting activity of fusidic acid (FA) in C. albicans resistant isolates and the potential use of Fusidic acid in combination with fluconazole to potentiate the antifungal activity of fluconazole to restore its activity in the resistant C. albicans isolates. METHODS: The resistance of C. albicans isolates was assessed by determination of minimum inhibitory concentration. The effect of Fusidic acid at sub-inhibitory concentration on efflux activity was assayed by rhodamine 6G efflux assay and intracellular accumulation. Mice model studies were conducted to evaluate the anti-efflux activity of Fusidic acid and its synergistic effects in combination with fluconazole. Impact of Fusidic acid on ergosterol biosynthesis was quantified. The synergy of fluconazole when combined with Fusidic acid was investigated by determination of minimum inhibitory concentration. The cytotoxicity of Fusidic acid was tested against erythrocytes. The effect of Fusidic acid on efflux pumps was tested at the molecular level by real-time PCR and in silico study. In vivo vulvovaginitis mice model was used to confirm the activity of the combination in treating vulvovaginal candidiasis. RESULTS: Fusidic acid showed efflux inhibiting activity as it increased the accumulation of rhodamine 6G, a substrate for ABC-efflux transporter, and decreased its efflux in C. albicans cells. The antifungal activity of fluconazole was synergized when combined with Fusidic acid. Fusidic acid exerted only minimal cytotoxicity on human erythrocytes indicating its safety. The FA efflux inhibitory activity could be owed to its ability to interfere with efflux protein transporters as revealed by docking studies and downregulation of the efflux-encoding genes of both ABC transporters and MFS superfamily. Moreover, in vivo mice model showed that using fluconazole-fusidic acid combination by vaginal route enhanced fluconazole antifungal activity as shown by lowered fungal burden and a negligible histopathological change in vaginal tissue. CONCLUSION: The current findings highlight FA's potential as a potential adjuvant to FLC in the treatment of vulvovaginal candidiasis.


Assuntos
Candidíase Vulvovaginal , Candidíase , Humanos , Feminino , Animais , Camundongos , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candidíase Vulvovaginal/tratamento farmacológico , Ácido Fusídico/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Azóis/farmacologia , Testes de Sensibilidade Microbiana
6.
RSC Adv ; 14(1): 160-180, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173594

RESUMO

Objective: To enhance the brain bioavailability of S-allyl-l-cysteine (SC) by developing novel S-allyl-l-cysteine chitosan nanoparticles (SC CS NPs) and examining the quantity of SC by developing a novel method of ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in ischemic rat brain treatment. Methods: The ionotropic gelation method was used to develop S-allyl cysteine-loaded CS NPs. The 4-factor, 5-level central composite design was optimized to determine the effect of independent variables, i.e., particle size, polydispersity index (PDI), zeta potential, EE, and loading capacity, together with their characterization, followed by drug release and intranasal permeation to enhance the brain bioavailability and examination of their neurobehavioral and biochemical parameters with their histopathological examination. Results: SC CS NPs were optimized at the particle size of 93.21 ± 3.31 nm (PDI: 0.317 ± 0.003), zeta potential of 44.4 ± 2.93, and drug loading of 41.23 ± 1.97% with an entrapment efficiency of 82.61 ± 4.93% having sustain and controlled release (79.92 ± 3.86%) with great permeation (>80.0%) of SC. SC showed the retention time of 1.021 min and 162.50/73.05 m/z. SC showed good linearity in the range of 5.0-1300.0 ng mL-1, % inter-and-intraday accuracy of 96.00-99.06% and CV of 4.38-4.38%. We observed significant results, i.e., p < 0.001 for improved (AUC)0-24 and Cmax delivered via i.v. and i.n. dose. We also observed the highly significantly observations of SC CS NPs (i.n.) based on their treatment results for the biochemical, neurobehavioral, and histopathological examination in the developed ischemic MCAO brain rat model. Conclusion: The excellent significant role of mucoadhesive CS NPs of SC was proven based on the enhancement in the brain bioavailability of SC via i.n. delivery in rats and easy targeting of the brain for ischemic brain treatment followed by an improvement in neuroprotection based on a very small dose of SC.

7.
Biomedicines ; 11(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38137382

RESUMO

The development of bacterial resistance is an increasing global concern that requires discovering new antibacterial agents and strategies. Bacterial quorum sensing (QS) systems play important roles in controlling bacterial virulence, and their targeting could lead to diminishing bacterial pathogenesis. In this context, targeting QS systems without significant influence on bacterial growth is assumed as a promising strategy to overcome resistance development. This study aimed at evaluating the anti-QS and anti-virulence activities of the ß-adrenoreceptor antagonist propranolol at sub-minimal inhibitory concentrations (sub-MIC) against two Gram-negative bacterial models Pseudomonas aeruginosa and Serratia marcescens. The effect of propranolol on the expression of QS-encoding genes was evaluated. Additionally, the affinity of propranolol to QS receptors was virtually attested. The influence of propranolol at sub-MIC on biofilm formation, motility, and production of virulent factors was conducted. The outcomes of the propranolol combination with different antibiotics were assessed. Finally, the in vivo protection assay in mice was performed to assess propranolol's effect on lessening the bacterial pathogenesis. The current findings emphasized the significant ability of propranolol at sub-MIC to reduce the formation of biofilms, motility, and production of virulence factors. In addition, propranolol at sub-MIC decreased the capacity of tested bacteria to induce pathogenesis in mice. Furthermore, propranolol significantly downregulated the QS-encoding genes and showed significant affinity to QS receptors. Finally, propranolol at sub-MIC synergistically decreased the MICs of different antibiotics against tested bacteria. In conclusion, propranolol might serve as a plausible adjuvant therapy with antibiotics for the treatment of serious bacterial infections after further pharmacological and pharmaceutical studies.

8.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894078

RESUMO

The problem of antibiotic resistance is a global critical public health concern. In light of the threat of returning to the pre-antibiotic era, new alternative approaches are required such as quorum-sensing (QS) disruption and virulence inhibition, both of which apply no discernible selective pressure on bacteria, therefore mitigating the potential for the development of resistant strains. Bearing in mind the significant role of QS in orchestrating bacterial virulence, disrupting QS becomes essential for effectively diminishing bacterial virulence. This study aimed to assess the potential use of sub-inhibitory concentration (0.25 mg/mL) of glyceryl trinitrate (GTN) to inhibit virulence in Serratia marcescens and Pseudomonas aeruginosa. GTN could decrease the expression of virulence genes in both tested bacteria in a significant manner. Histopathological study revealed the ability of GTN to alleviate the congestion in hepatic and renal tissues of infected mice and to reduce bacterial and leukocyte infiltration. This study recommends the use of topical GTN to treat topical infection caused by P. aeruginosa and S. marcescens in combination with antibiotics.

9.
FEBS Open Bio ; 13(12): 2290-2305, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37905308

RESUMO

Initiation of meiosis in budding yeast does not commit the cells for meiosis. Thus, two distinct signaling cascades may differentially regulate meiosis initiation and commitment in budding yeast. To distinguish between the role of these signaling cascades, we reconstructed protein-protein interaction networks and gene regulatory networks with upregulated genes in meiosis initiation and commitment. Analyzing the integrated networks, we identified four master regulators (MRs) [Ume6p, Msn2p, Met31p, Ino2p], three transcription factors (TFs), and 279 target genes (TGs) unique for meiosis initiation, and three MRs [Ndt80p, Aro80p, Rds2p], 11 TFs, and 948 TGs unique for meiosis commitment. Functional enrichment analysis of these distinct members from the transcriptional cascades for meiosis initiation and commitment revealed that nutritional cues rewire gene expression for initiating meiosis and chromosomal recombination commits cells to meiosis. As meiotic chromosomal recombination is highly conserved in eukaryotes, we compared the evolutionary rate of unique members in the transcriptional cascade of two meiotic phases of Saccharomyces cerevisiae with members of the phylum Ascomycota, revealing that the transcriptional cascade governing chromosomal recombination during meiosis commitment has experienced greater purifying selection pressure (P value = 0.0013, 0.0382, 0.0448, 0.0369, 0.02967, 0.04937, 0.03046, 0.03357 and < 0.00001 for Ashbya gossypii, Yarrowia lipolytica, Debaryomyces hansenii, Aspergillus fumigatus, Neurospora crassa, Kluyveromyces lactis, Schizosaccharomyces pombe, Schizosaccharomyces cryophilus, and Schizosaccharomyces octosporus, respectively). This study demarcates crucial players driving meiosis initiation and commitment and demonstrates their differential rate of evolution in budding yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Meiose/genética
10.
Diagnostics (Basel) ; 13(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37761346

RESUMO

Intestinal parasitic infections pose a grave threat to human health, particularly in tropical and subtropical regions. The traditional manual microscopy system of intestinal parasite detection remains the gold standard procedure for diagnosing parasite cysts or eggs. This approach is costly, time-consuming (30 min per sample), highly tedious, and requires a specialist. However, computer vision, based on deep learning, has made great strides in recent years. Despite the significant advances in deep convolutional neural network-based architectures, little research has been conducted to explore these techniques' potential in parasitology, specifically for intestinal parasites. This research presents a novel proposal for state-of-the-art transfer learning architecture for the detection and classification of intestinal parasite eggs from images. The ultimate goal is to ensure prompt treatment for patients while also alleviating the burden on experts. Our approach comprised two main stages: image pre-processing and augmentation in the first stage, and YOLOv5 algorithms for detection and classification in the second stage, followed by performance comparison based on different parameters. Remarkably, our algorithms achieved a mean average precision of approximately 97% and a detection time of only 8.5 ms per sample for a dataset of 5393 intestinal parasite images. This innovative approach holds tremendous potential to form a solid theoretical basis for real-time detection and classification in routine clinical examinations, addressing the increasing demand and accelerating the diagnostic process. Our research contributes to the development of cutting-edge technologies for the efficient and accurate detection of intestinal parasite eggs, advancing the field of medical imaging and diagnosis.

11.
J Mater Chem B ; 11(25): 5668-5692, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37249518

RESUMO

Instinctive gastrointestinal inflammatory conditions with persistent intestinal inflammation are known as "inflammatory bowel diseases" (IBDs). IBDs are growing progressively common throughout the world although it is still unclear what causes them. IBDs that cause recurrent, intermittent, and disburse inflammatory responses, may also have systemic symptoms such as ulcerative colitis and Crohn's disease. It has been discovered that a number of medications, including antibiotics, corticosteroids, and immune-suppressants, can promote mucous and damaged epithelial restoration. The incidences of general and specific therapy failure in IBD continue to climb, even though the availability of advanced biologics including anti-interleukins, anti-integrins, anti-tumor necrosis factor (anti-TNF), and small molecules such as tofacitinib exist. Management therapies that are currently being researched include specifically JAK (janus kinase) inhibitors, anti-IL (anti-interleukin) (IL-12, IL23), and leukocyte inhibitors such as sphingosine-1-phosphate receptors. Clinical treatments can have various adverse effects. In order to give pharmacological drugs to the disease-specific sites with improved efficacy and fewer complications, innovative frameworks centered on biomaterials are needed. We provide an outlook on the current state of several biomaterials used to treat IBD. This article comprehensively addresses numerous microparticles, nanoparticles, and hydrogels that have recently been made from natural bio-polymers and lipids. To support colon-specific target delivery and steady release of medications during IBD therapies, these various biomaterial-based monotherapies could be employed as efficient drug delivery systems.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos , Imunomodulação
12.
Appl Microbiol Biotechnol ; 107(11): 3763-3778, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079062

RESUMO

The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.


Assuntos
Biofilmes , Fatores de Virulência , Camundongos , Animais , Fatores de Virulência/metabolismo , Doxazossina/farmacologia , Reposicionamento de Medicamentos , Percepção de Quorum , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo
13.
Biology (Basel) ; 12(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37106705

RESUMO

Protecting food from bacterial contamination is crucial for ensuring its safety and avoiding foodborne illness. Serratia marcescens is one of the food bacterial contaminants that can form biofilms and pigments that spoil the food product and could cause infections and illness to the consumer. Food preservation is essential to diminish such bacterial contaminants or at least reduce their pathogenesis; however, it should not affect food odor, taste, and consistency and must be safe. Sodium citrate is a well-known safe food additive and the current study aims to evaluate its anti-virulence and anti-biofilm activity at low concentrations against S. marcescens. The anti-virulence and antibiofilm activities of sodium citrate were evaluated phenotypically and genotypically. The results showed the significant effect of sodium citrate on decreasing the biofilm formation and other virulence factors, such as motility and the production of prodigiosin, protease, and hemolysins. This could be owed to its downregulating effect on the virulence-encoding genes. An in vivo investigation was conducted on mice and the histopathological examination of isolated tissues from the liver and kidney of mice confirmed the anti-virulence activity of sodium citrate. In addition, an in silico docking study was conducted to evaluate the sodium citrate binding ability to S. marcescens quorum sensing (QS) receptors that regulates its virulence. Sodium citrate showed a marked virtual ability to compete on QS proteins, which could explain sodium citrate's anti-virulence effect. In conclusion, sodium citrate is a safe food additive and can be used at low concentrations to prevent contamination and biofilm formation by S. marcescens and other bacteria.

14.
Biomarkers ; 28(3): 323-340, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36657106

RESUMO

BACKGROUND: Although it has been shown that the long non-coding RNA (lncRNA) insulin-like growth factor type 1 receptor (IGF1R) antisense imprinted non-protein coding RNA (IRAIN) is downregulated in leukaemia cell lines, its usefulness as a prognostic marker in acute myeloid leukaemia (AML) has not yet been thoroughly investigated. Here, we sought to determine whether the expression of IRAIN is associated with clinical outcome of AML patients. SUBJECTS & METHODS: Using quantitative real-time polymerase chain reaction (qRT-PCR), IRAIN expression levels were assessed in peripheral blood leukocyte samples from 150 patients with AML and 50 healthy controls. Analysis was done on the relationship between IRAIN expression and clinical outcomes in AML patients. RESULTS: When compared to healthy controls, IRAIN expression was markedly reduced in AML patients (P = 0.019). IRAIN expression could distinguish French-American-British (FAB) subtypes of AML (P = 0.024). Low IRAIN expression status was associated with shorter event-free survival (EFS) in the non-t(15;17) cytogenetically abnormal AML subset (P = 0.004). IRAIN downregulation was identified as an independent adverse prognostic marker for complete remission (CR) not only in the in the non-t(15;17) cytogenetically abnormal AML subset (P = 0.006) but also in the AML-M4/M5 subgroup (P = 0.033). CONCLUSION: Aberrantly low IRAIN expression is closely associated with lower CR rates in AML patients, particularly in non-t(15;17) cytogenetically abnormal AML and M4/M5 AML, suggesting that the determination of IRAIN expression level at diagnosis provides valuable prognostic information, serves as a promising biomarker for evaluating treatment response, and helps predicting clinical outcome of AML patients.


Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Humanos , Regulação para Baixo , Leucemia Mieloide Aguda/genética , Biomarcadores , Prognóstico
15.
J Cell Physiol ; 238(1): 32-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317692

RESUMO

A type of small noncoding RNAs known as microRNAs (miRNAs) fine-tune gene expression posttranscriptionally by binding to certain messenger RNA targets. Numerous physiological processes in the liver, such as differentiation, proliferation, and apoptosis, are regulated by miRNAs. Additionally, there is growing evidence that miRNAs contribute to liver pathology. Extracellular vesicles like exosomes, which contain secreted miRNAs, may facilitate paracrine and endocrine communication between various tissues by changing the gene expression and function of distal cells. The use of stable miRNAs as noninvasive biomarkers was made possible by the discovery of these molecules in body fluids. Circulating miRNAs reflect the conditions of the liver that are abnormal and may serve as new biomarkers for the early detection, prognosis, and evaluation of liver pathological states. miRNAs are appealing therapeutic targets for a range of liver disease states because altered miRNA expression is associated with deregulation of the liver's metabolism, liver damage, liver fibrosis, and tumor formation. This review provides a comprehensive review and update on miRNAs biogenesis pathways and mechanisms of miRNA-mediated gene silencing. It also outlines how miRNAs affect hepatic cell proliferation, death, and regeneration as well as hepatic detoxification. Additionally, it highlights the diverse functions that miRNAs play in the onset and progression of various liver diseases, including nonalcoholic fatty liver disease, alcoholic liver disease, fibrosis, hepatitis C virus infection, and hepatocellular carcinoma. Further, it summarizes the diverse liver-specific miRNAs, illustrating the potential merits and possible caveats of their utilization as noninvasive biomarkers and appealing therapeutic targets for liver illnesses.


Assuntos
Biomarcadores , Hepatopatias , Fígado , MicroRNAs , Humanos , Fígado/patologia , Fígado/fisiologia , MicroRNAs/genética , Exossomos , Inativação Gênica , Hepatopatias/patologia
16.
Reprod Sci ; 30(2): 656-666, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35969362

RESUMO

Despite the fact that multiple recurrent pregnancy loss (RPL) etiologies have been identified, 50-70% of RPL cases remain enigmatic, and idiopathic RPL is still a serious medical challenge. A plethora of studies have investigated the correlation of RPL with variations in coagulation and/or fibrinolytic factors-encoding genes. Notwithstanding, evidence for a link between these variations and RPL remains discordant. We aimed to explore the association of thrombophilic and hypofibrinolytic gene variations with RPL development. Two hundred Saudi women were recruited in this study, comprising 150 women experiencing RPL and 50 healthy women. Thirteen genetic variants, including FV G1691A, FV A4070G, F2 G20210A, F13A1 G103T, FGB - 455G > A, PAI-1 - 675 4G/5G, ITGB3 T1565C, MTHFR C677T, MTHFR A1298C, ACE I/D, APOB G10708A, APOE T388C, and APOE C526T were genotyped using ViennaLab StripAssay. Women experiencing RPL harbor significantly higher frequencies of the F13A1 103 T, FGB - 455A, and ITGB3 1565C alleles than control women (p < 0.001). No differences in the prevalence of other investigated variants were identified between control women and those with RPL. No considerable link of F5 1691G > A/4070A > G, MTHFR 677C > T/1298A > C, and APOE 388 T > C/526C > T haplotypes with RPL risk was demonstrated. F13A1 G103T, FGB - 455G > A, and ITGB3 T1565C variants are connected to a higher likelihood of developing RPL and, hence, may have the potential to identify those women at risk of RPL, thereby, improving RPL susceptibility prediction. Incorporating molecular testing of thrombophilic and hypofibrinolytic genetic variants into routine workup could confer a promising approach for refined RPL risk assessment.


Assuntos
Aborto Habitual , Trombofilia , Gravidez , Humanos , Feminino , Genótipo , Inibidor 1 de Ativador de Plasminogênio/genética , Alelos , Aborto Habitual/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Trombofilia/genética , Trombofilia/complicações , Apolipoproteínas E/genética
17.
Microorganisms ; 10(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557708

RESUMO

Bacteria communicate with each other using quorum sensing (QS) which works in an inducer/receptor manner. QS plays the main role in orchestrating diverse bacterial virulence factors. Pseudomonas aeruginosa is one of the most clinically important bacterial pathogens that can cause infection in almost all body tissues. Besides its efficient capability to develop resistance to different antibiotics, P. aeruginosa acquires a huge arsenal of virulence factors that are controlled mainly by QS. Challenging QS with FDA-approved drugs and natural products was proposed as a promising approach to mitigate bacterial virulence enabling the host immunity to complete the eradication of bacterial infection. The present study aims to evaluate the dipeptidase inhibitor-4 inhibitor hypoglycemic linagliptin anti-QS and anti-virulence activities against P. aeruginosa in vitro, in vivo, and in silico. The current results revealed the significant ability to diminish the production of protease and pyocyanin, motility, and biofilm formation in P. aeruginosa. Furthermore, the histopathological examination of liver and kidney tissues of mice injected with linagliptin-treated bacteria showed an obvious reduction of pathogenesis. Linagliptin downregulation to QS-encoding genes, besides the virtual ability to interact with QS receptors, indicates its anti-QS activities. In conclusion, linagliptin is a promising anti-virulence and anti-QS candidate that can be used solely or in combination with traditional antimicrobial agents in the treatment of P. aeruginosa aggressive infections.

18.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361877

RESUMO

The development of bacterial resistance to antibiotics is an increasing public health issue that worsens with the formation of biofilms. Quorum sensing (QS) orchestrates the bacterial virulence and controls the formation of biofilm. Targeting bacterial virulence is promising approach to overcome the resistance increment to antibiotics. In a previous detailed in silico study, the anti-QS activities of twenty-two ß-adrenoreceptor blockers were screened supposing atenolol as a promising candidate. The current study aims to evaluate the anti-QS, anti-biofilm and anti-virulence activities of the ß-adrenoreceptor blocker atenolol against Gram-negative bacteria Serratia marcescens, Pseudomonas aeruginosa, and Proteus mirabilis. An in silico study was conducted to evaluate the binding affinity of atenolol to S. marcescens SmaR QS receptor, P. aeruginosa QscR QS receptor, and P. mirabilis MrpH adhesin. The atenolol anti-virulence activity was evaluated against the tested strains in vitro and in vivo. The present finding shows considerable ability of atenolol to compete with QS proteins and significantly downregulated the expression of QS- and virulence-encoding genes. Atenolol showed significant reduction in the tested bacterial biofilm formation, virulence enzyme production, and motility. Furthermore, atenolol significantly diminished the bacterial capacity for killing and protected mice. In conclusion, atenolol has potential anti-QS and anti-virulence activities against S. marcescens, P. aeruginosa, and P. mirabilis and can be used as an adjuvant in treatment of aggressive bacterial infections.


Assuntos
Atenolol , Fatores de Virulência , Camundongos , Animais , Atenolol/farmacologia , Atenolol/metabolismo , Fatores de Virulência/genética , Percepção de Quorum , Biofilmes , Bactérias Gram-Negativas , Pseudomonas aeruginosa , Serratia marcescens/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteus mirabilis/metabolismo , Proteínas de Bactérias/metabolismo
19.
Biotech Histochem ; 97(5): 322-333, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34607472

RESUMO

Cardiac disease is the leading cause of mortality and disability worldwide. We investigated the role of undifferentiated adipose tissue-derived mesenchymal stem cells (ADMSC) alone and ADMSC seeded onto the electro-spun nanofibers (NF) for reconstructing damaged cardiac tissue in isoprenaline-induced myocardial infarction (MI) in rats. ADMSC were sorted by morphological appearance and by detection of cluster of differentiation (CD) surface antigens. The therapeutic potential of ADMSC for treating MI was evaluated by electrocardiogram (ECG), biochemical analysis, molecular genetic analysis and histological examination. Treatment of MI-challenged rats with ADMSC improved ECG findings, which were corroborated by significant decreases in serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzyme activities together with reduced serum troponin T (cTnT) and connexin 43 (Cx43) levels. MI model rats treated with ADMSC exhibited a significant increase in serum alpha sarcomeric actin (Actn) and GATA binding protein 4 (GATA4), and NK2 homeobox 5 (NKX2.5) gene expression was decreased following treatment with ADMSC. ADMSC also ameliorated damage to cardiac tissue. The effects of ADMSC seeded onto NF were superior to those of ADMSC alone. ADMSC may be useful for mitigation of MI.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Nanofibras , Tecido Adiposo , Animais , Infarto do Miocárdio/terapia , Ratos , Regeneração
20.
Tissue Cell ; 73: 101645, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34509824

RESUMO

The current approach was designed to unearth the therapeutic potential of osteoblasts infusion, yielded from cultivating rat mesenchymal stem cells of bone marrow source in osteogenic differentiation media supplied with either hydroxyapatite nanoparticles (HA-NPs), chitosan/hydroxyapatite nanomaterials (C/HA-NPs), or chitosan nanoparticles, in the osteoporotic rats. The successful migration of the osteoblasts to the diseased bones of rats in C/HA-NPs and HA-NPs groups was evidenced by PCR screening of the Y-linked sex-determining gene (SRY) in the femoral bone tissue. Serum bone biomarker levels and gene expression patterns of cathepsin K, receptor activator of nuclear factor kappa B ligand (RANKL), and osteoprotegerin (OPG) were assessed. Additionally, histological examination of the femoral bone tissues of rats was performed. The current outcomes revealed that osteoblast implantation, resulted from C/HA-NPs or HA-NPs group, significantly lessened bone sialoprotein level. In Addition, it yielded a significant decline in the gene expression patterns of cathepsin K, RANKL, and RANKL/OPG proportion as well as up-regulation in BMP-2 and Runx-2 gene expression levels as opposed to the untreated ovariectomized animals. Moreover, it could restrain bone resorption and refine bone histoarchitecture. Conclusively, this study sheds light on the therapeutic significance of osteoblasts transplantation in alleviating the intensity of the bone remodeling cycle, consequently representing a hopeful therapeutic approach for primary osteoporosis.


Assuntos
Reabsorção Óssea/complicações , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Nanoestruturas/química , Osteoblastos/patologia , Osteoporose/complicações , Animais , Biomarcadores/sangue , Reabsorção Óssea/sangue , Reabsorção Óssea/genética , Feminino , Fêmur/patologia , Regulação da Expressão Gênica , Masculino , Osteoporose/sangue , Osteoporose/genética , Ovariectomia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA